ATOM MEKANIKA KUANTUM dan sejarah perkembangan teori atom


1. Teori Atom John Dalton

Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa “Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi”. Sedangkan Prouts menyatakan bahwa “Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap”. Dari kedua hukum tersebut Dalton mengemukakan pendapatnya tentang atom sebagai berikut:

  1. Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
  2. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
  3. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
  4. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.

Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti pada tolak peluru. Seperti gambar berikut ini:

model atom dalton

Kelemahan:

Teori dalton tidak menerangkan hubungan antara larutan senyawa dan daya hantar arus listrik.

2. Teori Atom J. J. Thomson

Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebut elektron.
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. Yang menyatakan bahwa:

“Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron”

Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal. Model atom Thomson dapat digambarkan sebagai berikut:

atom thomson

Kelemahan:

Kelemahan model atom Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.

3. Teori Atom Rutherford

Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden) melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:

  1. Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
  2. Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
  3. Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.

Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan Model Atom Rutherford yang menyatakan bahwa Atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak.

Model atom Rutherford dapat digambarkan sebagai beriukut:

atom rutherford

Kelemahan:

Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom.

4. Teori Atom Bohr

ada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:

  1. Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
  2. Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
  3. Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
  4. Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.

Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.

atom Bohr

Kelemahan:

Model atom ini tidak bisa menjelaskan spektrum warna dari atom berelektron banyak.

Model Atom Mekanika Kuantum

Pada tahun 1924, Louis de Broigle mengemukakan bahwa elektron bergerak dengan melakukan gerak gelombang. Kemudian, Model Atom Mekanika Kuantum di kembangkan oleh Werner Heisenberg dan Erwin Schrodinger.

Apakah perbedaan antara Model Atom Mekanika Kuantum dengan Model Atom Bohr?
Lihat tabel berikut ini
No
Model Atom Bohr
Model Atom Mekanika Kuantum
1
Elektron bergerak dalam lintasannya yang berbentuk lingkaran
Electron bergerak dalam orbital dengan melakukan gerak gelombang
2
Electron mengitari inti atom pada lintasan (kulit) dengan tingkat energi tertentu
Electron mengitari inti atom pada orbital yang membentuk kulit
3
Posisi sebuah electron yang bergerak mengelilingi inti atom dapat ditentukan
Posisi sebuah electron yang bergerak mengelilingi inti atom tidak dapat ditentukan
 Bagaimanakah struktur atomnya?
Untuk lebih mengetahui strukturnya, kita harus mengetahui istilah yang disebut dengan “bilangan kuantum”.
Ada empat jenis bilangan kuantum, yaitu;
1.
Bilangan Kuantum Utama (n)
2.      Bilangan Kuantum Azimuth (l)
3.      Bilangan Kuantum Magnetik (m)
4.      Bilangan Kuantum Spin (s)
Bilangan Kuantum Utama (n)
Adalah bilangan yang menyatakan tingkat energi atau kulit electron berada
Nomor Kulit
Kulit
Jumlah elektron max (2n)2
(n=1)
K
2(1)2 = 2
(n=2)
L
2(2)= 8
(n=3)
M
 2(3)= 18
(n=4)
N
  2(4)= 32
Bilangan Kuantum Azimuth (l)
      Bilangan yang menyatakan letak suatu subkulit
No Kulit
Kulit
Nilai Subkulit
Subkulit
(n=1)
K
0
s
(n=2)
L
0, 1
p
(n=3)
M
0, 1 ,2
d
(n=4)
N
0, 1, 2, 3
f
Subkulit
Jumlah Orbital
s
1
p
3
d
5
f
7
Bilangan Kuantum Magnetik (m)
Bilangan yang menyatakan letak suatu orbital itu berada
Subkulit
Nilai (m)
s
0
p
-1,0,+1
d
-2,-1, 0, +1, +2
f
-3, -2,-1, 0 +1, +2, +3
Contoh :
Tentukan keempat bilangan kuantum dari unsur Na & Fe (Z Na = 11, Z Fe = 26)
·          11Na : 1s2 2s2 2p6 3s1
3s  : n = 3, l = 0, m = 0, s = + 1/2
·          26Fe : 1s2 2s2 2p6 3s2 3p6 4s2 3d6
3d6   : n = 3, l = 2, m = -2, s = - 1/2
ATURAN AUFBAU

Sistem Periodik dan Aturan Aufbau;Blok s,p,d dan f

Elemen Blok S dan P

Blok s : Golongan IA dan IIA
Blok s tergolong logam aktif, kecuali H dan He. H tergolong non logam sedangkan He tergolong gas mulia

Blok p : Golongan IIIA sampai dengan VIIIA
Blok p tergolong unsure-unsur representative karena di situ terdapat semua jenis unsur,logam,nonlogam dan metaloid.

Elemen-elemen pada golongan 1 dari tabel periodik memiliki konfigurasi elektron terluar ns1 (dimana n merupakan nomor antara 2 sampai 7). Seluruh elemen pada golongan 2 memiliki konfigurasi elektron terluar ns2. Elemen-elemen di grup 1 dan 2 dideskripsikan sebagai elemen-elemen blok s.

Elemen-elemen dari golongan 3 seterusnya hingga gas mulia memiliki elektron terluar pada orbital p. Oleh karenanya, dideskripsikan dengan elemen-elemen blok p.

Elemen blok d

Blok d : golongan IIIB sampai dengan IIB
Unsur blo d disebut juga unsure transisi, semuanya tergolong logam

Perhatikan bahwa orbital 4s memiliki energi lebih rendah dibandingkan dengan orbital 3d sehingga orbital 4s terisi lebih dahulu. Setelah orbital 3d terisi, elektron selanjutnya akan mengisi orbital 4p.

Elemen-elemen pada blok d adalah elemen di mana elektron terakhir dari orbitalnya berada pada orbital d. Periode pertama dari blok d terdiri dari elemen dari skandium hingga seng, yang umumnya kita sebut dengan elemen transisi atau logam transisi. Istilah “elemen transisi” dan “elemen blok d” sebenarnya tidaklah memiliki arti yang sama, tetapi dalam perihal ini tidaklah menjadi suatu masalah.

Elektron d hampir selalu dideskripsikan sebagai, sebagai contoh, d5 atau d8 – dan bukan ditulis dalam orbital yang terpisah-pisah. Perhatikan bahwa ada 5 orbital d, dan elektron akan menempati orbital sendiri sejauh ia mungkin. Setelah 5 elektron menempati orbital sendiri-sendiri barulah elektron selanjutnya berpasangan.

d5 berarti
d8 berarti
Blok elemen F

Blok f : Lantanida dan Aktinida

Unsur blok f disebut juga unsur transisi dalam, semuanya tergolong logam. Semua unsur transisi dalam periode 7 yaitu unsur aktinida bersifat radioaktif.

(Dari berbagai sumber) :)
About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s